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Figure 3: Constraints region of the problem

4 Simplex method

4.1 Idea of the simplex method

According to the fundamental theorem, instead of exploring the infinite set of

feasible solutions, it is necessary to consider only a finite number of feasible basic

solutions (FBS). Thus, the concept of LPP solution is as follows:

1. Find all FBS.

2. Calculate for each of them corresponding value of OF Z.

3. Compare and determine the best.

But, in general, for large values of n and m number of basic solutions (and

hence admissible basis solutions) can be huge (about Cm
n ) and the practical im-

plementation of the iteration through all FBS becomes impossible.

These difficulties stem from the fact that this concept is associated with chaotic

brute force iteration through FBS without taking into account how the new

checked FBS changes OF Z and whether it brings us to the desired optimum.
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The number of analyzed FBS can be dramatically reduced if we make iterations

purposeful achieving monotonic variation of OF, ie each successive FBS was better

than the last (or at least not worse).

The main method for solving LPP – simplex method is based on the idea of

continuous improvement of solutions. Obviously, for the realization of this idea

method should include three main elements:

1. A method for determining the initial FBS.

2. Criterion by which we determine optimality of the solution found, or the

need for its further improvement.

3. A rule to advance to the next ”best” FBS.

4.2 The scheme of the simplex method

We construct the so-called simplex method for solving LPP in canonical form

which has the following schema:

Step 0. Construction of the initial FBS

Find a FBS x0 of original LPP (this is called the initial FBS). Let this FBS

has corresponding

• basis B,

• basis matrix ,

• nonbasic matrix N,

• vector of basic variables xB = B−1b,

• nonbasic variables xN ,

• vector of constraints values πT = cTBB
−1. (in optimal solutions it is valuation

of resources)

Step 1. Calculation of the components of the relative valuations

vector of nonbasic variables.

dT
N

= cTBB
−1N − cTN or = πTNN − cTN .

Step 2. The verification of the optimality conditions.

If dN ≥ 0 holds then stop the calculation – current FBS is a solution of the

original problem.
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Step 3. Selecting the nonbasic variables (xN)p that gets introduced

into the set of basic variables.

Choose p, for which (dN)p = max
j|(dN )j<0

|(dN)j|

(Usually to the minimal negative component dN = the maximum absolute value

negative).

Step 4. Selecting the basic variable that gets excluded from the set

of basic variables.

Calculate the elements of the leading column: αp = B−1ap.

The condition of admissibility

If αp ≤ 0, then stop computing – the objective function is not bounded above.

Otherwise choose q, for which holds βq
αqp

= min
αip>0

βi
αip

, ie variable (xB)q will be

excluded from the set of basic variables.

Step 5. Replacement operation.

Construct a basis for a new FBS by replacing the column aq of current basis

to column ap. Build a new basis matrix and non-basis N . Find new FBS with

xB = B−1b. Go to step 1.

Procedure 1-5 is called iteration of the simplex method.

If you have a minimum LPP, a sufficient condition for optimality is the condi-

tion dN ≤ 0.

In practice, number of iterations is 3m, and the total calculation time km3 (k

– proportionality factor depending on the type of problem).

4.3 Example of using two-stage method

Suppose we have a mathematical model:

min z = 3x1 + x2, (10)

2x1 + x2 ≥ 2, (11)

x1 + 2x2 ≥ 2, (12)

x1, x2 ≥ 0 (13)
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Let us rewrite the problem in the canonical form:

min z = 3x1 + x2 + 0s1 + 0s2, (14)

2x1 + x2 − 1s1 = 2, (15)

x1 + 2x2 − 1s2 = 2, (16)

x1, x2, s1, s2 ≥ 0. (17)

0

1

2

1 2

Figure 4

Phase I

1. Introduce artificial variables into the constraints (11) and (12) (because initially

these restrictions had the form “≥”). We denote artificial variables by R1 and R2,

respectively. Then the model (14)-(17) take the following form:

min z = 3x1+x2 + 0s1 + 0s1 + 0R1 + 0R2, (18)

2x1+x2 − 1s1 +R1 = 2, (19)

x1 + 2x2 − 1s2 +R2 = 2, (20)

x1,x2, s1, s2, R1, R2 ≥ 0. (21)
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2. At the first stage of two-stage method we should minimize the supporting OF

r =
∑m

i=1Ri. In our case: r = R1 +R2.

We express R1 and R2 from equation (19), (20) respectively:

R1 = 2− 2x1 − x2 + 1s1,

R1 = 2− x1 − 2x2 + 1s2.

Substituting these expressions into the objective function r:

r = R1 +R2 = 4− 3x1 − 3x2 + 1s1 + 1s2.

Convert it to the following form:

r + 3x1 + 3x2 − 1s1 − 1s2 = 4.

3. Build the initial simplex table of two-stage method. Row r is filled according

to the expression that was found on the previous step. OF z (18) is transformed

to the form:

z − 3x1 − x2 − 0s1 − 0s2 − 0R1 − 0R2 = 0.

then fill z-row of the table.

Basic variables are variables R1 and R2.

Basic variables x1 x2 s1 s2 R1 R2 Solution

r(min) 3 3 –1 –1 0 0 4

z –3 –1 0 0 0 0 0

R1 2 1 –1 0 1 0 2 2/1=2

R2 1 2 0 –1 0 1 2 2/2=1 (min)

Now we solve the problem using the tabular simplex method by taking row r

as the objective function row and on row z will perform the same transformations

as over conventional constraints that will allow us after ending the stage I get

complete information about the initial FBS of phase II. According to optimality

conditions for the minimum problem into the basis introduced a variable, for which

there is corresponding positive relative score (positive coefficient of r-row). In our
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case as x1 as well as x2 can be introduced into the basis. We choose variable x2.

Under conditions of admissibility derive from basis variable R2.

We get the table:

Basic variables x1 x2 s1 s2 R1 R2 Solution

r(min) 3
2

0 –1 1
2

0 −3
2

1

z −5
2

0 0 −1
2

0 1
2

1

R1
3
2

0 –1 1
2

1 −1
2

1 2/3 (min)

R2
1
2

1 0 −1
2

0 1
2

1 2

Since not all the coefficients of the objective function r are not positive, then

continue iteration of the simplex method. Under conditions of optimality we in-

troduce a variable basis x1 and under conditions of admissibility derive from basis

variable R1. We get the table:

Basic variables x1 x2 s1 s2 R1 R2 Solution

r(min) 0 0 0 0 –1 –1 0

z 0 0 –5
3

1
3

5
3

–1
3

8
3

x1 1 0 –2
3

1
3

2
3

–1
3

2
3

x2 0 1 1
3

–2
3

–1
3

1
3

2
3

The last table optimality condition for the objective function r holds, that is

we found a solution in which this function reaches a minimum. Since the optimal

value of function r equals to zero, the initial problem has an acceptable solution -

go to stage II.

Phase II

Columns R1 and R2 and row r we remove from the current table, and then solve

the problem using tabular simplex method by minimizing the objective function z.
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Basic variables x1 x2 s1 s2 Solution

z(min) 0 0 –5
3

1
3

8
3

x1 1 0 –2
3

1
3

2
3

2

x2 0 1 1
3

–2
3

2
3

–

According to the optimality conditions we introduce into the basis variable s2,

under conditions of admissibility derive from basis variable x1. We get the table:

Basic variables x1 x2 s1 s2 Solution

z(min) –1 0 –1 0 2

s2 3 0 –2 1 2

x2 2 1 –1 0 2

This table is optimal, because the row z coefficients of the nonbasic variables

are non-positive (holds optimality condition for the minimum problem). Problem

solved.

Solution: x1 = 0, x2 = 2, min z = 2.

4.4 Special cases occurring in the application of the sim-

plex method

Let LPP given:

cTx→ max,

Ax = b,

x ≥ 0.

Let x0 – FBS of constraint system.

Transformed problem corresponding to FBS x0:

cTBβ − dTNxN → max,

xB +B−1NxN = β,

xB ≥ 0, xN ≥ 0.

Special cases of the use of the simplex method are:
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• degeneracy of the solutions;

• unbounded objective function;

• presence of alternative optimum.

4.4.1 The degeneracy of solution

Indication of degeneracy : ∃i βi = 0 (1 ≤ i ≤ m) (one or more basic

variables take zero value).

Indication of degeneracy by the simplex table corresponding solution:

Basic
vars. (xB)1 . . . (xB)m (xN)1 (xN)j (xN)n−m Solution

z

(xB)1 1

. . .

(xB)i 1 0

. . .

(xB)m 1

So in LPP shown on Figure 5 A is a degenerate vertex.

Point A correspond to three bases:

{a∗x1 , a∗x2 , a∗s2 , a∗s4} ;

{a∗x1 , a∗x2 , a∗s1 , a∗s4} ;

{a∗x1 , a∗x2 , a∗s3 , a∗s4} .

Simplex table for the first of the above bases has the following structure:
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A

(1)

(2)

(3)

(4)
x2 = 0

s3 = 0

s
2  =

 0

s
1  =

 0
s

4  =
 0

x 1
 =

 0

Figure 5

Basic
vars. x1 x2 s2 s4 s1 s3 Solution

z + + +

x1 1 + – +

x2 1 0 + +

s2 1 – – 0

s4 1 + 0 +

4.4.2 Unlimited set of feasible solutions

Indication : ∃ j ∈ IN α∗j ≤ 0.

Indication of unboundedness of set of feasible solutions by the simplex

table:
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Basic
vars. (xB)1 . . . (xB)m (xN)1 (xN)j (xN)n−m Solution

z

(xB)1 1 ≤ 0

. . . . . .

(xB)i 1 ≤ 0

. . . . . .

(xB)m 1 ≤ 0

4.4.3 Unrestricted objective function

A necessary condition for this is unbounded set of feasible solutions.

Indication (maximum problem): ∃ j ∈ IN ( (dN)j < 0 α∗j ≤ 0).

Indication of unboundedness of set of feasible solutions by the simplex

table:

Basic
vars. (xB)1 . . . (xB)m (xN)1 (xN)j (xN)n−m Solution

z < 0

(xB)1 1 ≤ 0

. . . . . .

(xB)i 1 ≤ 0

. . . . . .

(xB)m 1 ≤ 0

LPP shown on Figure 6 has unlimited from above objective function.

FBS A is represented by the simplex table:

Basic
vars. x1 x2 s3 s1 s2 Solution

z + – +

x1 1 – – +

x2 1 + – +

s3 1 + 0 +
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(1)

(2)

(3)

x2 = 0

s3
 =

 0

s
2  = 0

s1
 =

 0

x 1
 =

 0

A

Figure 6: Note : lines (1) and (3) are parallel.

In the case of the minimization problem indication is as follows : ∃ j
∈ IN ( (dN)j > 0 α∗j ≤ 0).

4.4.4 Alternate optimum

Indication of alternate optimum : dN≥ 0, ∃ j (dN)j = 0 (one or more

nonbasic variables have zero relative score).

Indication of alternate optimum by the simplex table corresponding so-

lution:

22



Basic
vars. (xB)1 . . . (xB)m (xN)1 (xN)j (xN)n−m Solution

z >0 0 >0

(xB)1 1

. . .

(xB)i 1

. . .

(xB)m 1

There are three such cases:

1. alternate optimum – (infinite) bounded set;

2. alternate optimum – (infinite) unbounded set;

3. when there is an indication of the alternate optimum only one point is opti-

mal.
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