
3 Graphical method of solving LPP

Linear programming problem (LPP) can be solved graphically, if the problem

has no more than two variables. Let us find the solution of the problem comprising

determining the maximum value of the function under the conditions

z = c1x1 + c2x2 (1)

ai1x1 + ai2x2 ≤ bi, i = 1, . . . ,m, (2)

x1, x2 ≥ 0. (3)

Each of inequalities of the constraint system (2)-(3) geometrically defines a

half-plane, respectively, with the boundary lines ai1x1 + ai2x2 = bi(i = 1, . . . ,m),

x1 = 0, x2 = 0. In that case, if the system of inequalities (2)-(3) is consistent

the range of its solutions is the set of points that belong to all of the half-planes.

In general, the region of admissible solutions of the problem (1)-(3) is a convex

polygon. Side of the polygon lie on the lines whose equations are obtained from

the original constraint system by replacing the signs of inequalities with the exact

equality signs.

Thus, the original LPP is to find a point of solutions of the polygon in which the

objective function z takes the maximum value. This point exists when the polygon

of solutions is non-empty and the objective function is bounded from above. Under

specified conditions in one of the vertices of the polygon of solutions the objective

function takes the maximum value. To determine this vertex we construct line

level c1x1 + c2x2 = h (where h is a constant), passing through the polygon of

solutions and will move in the direction of the vector (normal) N = (c1, c2) until

it passes through the last point in common with its solution polygon. Coordinates

of a specified point determine the best solution to this problem.

Feasible region (FR) of inequality system (1)-(3) may be empty, a single point,

segment, beam, or an unbounded convex polygon region.

On Figures 1a-2b are some cases that can be encountered during the problem

solution finding (1)-(3).

Figure 1a describes the case where the objective function takes the maximum

value at a single point. Figure 1b shows that the objective function has maximum

value at any point of the segment AB (direct objective function is parallel to the

constraint represented by the line AB). In such cases we say that the problem has
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an alternative optimum.
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Figure 1: Examples of problems with the consistent system and limited objective

function

So, if the feasible region is a convex polygon (limited region), the maximum

and minimum of the linear function z is reached at least one of the vertices of the

polygon. If the extreme value of z is reached at two vertices (the case of alternative

optimum), the same extreme value is reached in any point on the segment joining

the two vertices.

In the case of an unbounded region maximum (minimum) of the function z

either does not exist if z is unbounded from above (below, or is reached at least

at one of the vertices of the area. Figure 2a shows the case where the objective

function is not bounded from above on the set of feasible solutions, and Figure 2b

shows the case where the system of constraints is inconsistent.

Thus, the geometric method for solving the LPP for a maximum includes the

following steps:

1. The construction of the boundary lines, the equations of which are obtained

by replacing in the constraints (2) and (3) inequality signs with the exact
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Figure 2: Examples of special cases

equality signs.

2. Finding the half-planes defined by each of the inequality constraints of the

problem. To determine on which side of the boundary line the half-plane

corresponding to a given inequality is located, it suffices to verify any point

(the easiest way is to take point (0,0)). If after substituting its coordinates

in the left-hand side the inequality is satisfied, the halfplane faces the point

of measurement, if the inequality is not satisfied, then the corresponding

halfplane faces the opposite direction. The direction of the half-plane is

indicated by sign ”→” or shading. (Inequalities x1 ≥ 0 and x2 ≥ 0 also

correspond to the half-planes).

3. Finding solutions polygon.

4. Construction of the vector N = (c1, c2).

5. Construction of the line c1x1 + c2x2 = h that passes through the solutions

polygon.

6. Moving the line c1x1 + c2x2 = h to the direction of vector N . whereby
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finding point(s) in which the objective function takes the maximum value,

or determining unbounded function from above on the set of solutions.

7. Determination of the coordinates of optimum point of the function and cal-

culation of the objective function value at this point.

Note that finding the minimum value of a linear function for a given set of con-

straints is different from the location of its maximum value at the same constraints

only in that line-level c1x1 + c2x2 = h moves not along the vector N = (c1, c2), but

in the opposite direction.

3.1 Example solution of LPP using graphical method

max z = 3xE + 2xi (4)

1xE + 2xi ≤ 6 (5)

2xE + 1xi ≤ 8 (6)

−1xE + 1xi ≤ 1 (7)

1xi ≤ 2 (8)

xE, xi ≥ 0 (9)

Feasible region of the problem is the polygon ABCDEF (Figure 3). The optimal

solution to the problem - point C (the closest point of intersection of constraints to

the point of the objective function vector vertex). Values xE and xi at this point

are determined by solving the system of two equations 1xE+2xi = 6, 2xE+1xi = 8.

Solving it, we get: xE = 10
3

, xi = 4
3
. Revenue z received in this case, will be 38

3

(thousand dollars).
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Figure 3: Constraints region of the problem

4 Simplex method

4.1 Idea of the simplex method

According to the fundamental theorem, instead of exploring the infinite set of

feasible solutions, it is necessary to consider only a finite number of feasible basic

solutions (FBS). Thus, the concept of LPP solution is as follows:

1. Find all FBS.

2. Calculate for each of them corresponding value of OF Z.

3. Compare and determine the best.

But, in general, for large values of n and m number of basic solutions (and

hence admissible basis solutions) can be huge (about Cm
n ) and the practical im-

plementation of the iteration through all FBS becomes impossible.

These difficulties stem from the fact that this concept is associated with chaotic

brute force iteration through FBS without taking into account how the new

checked FBS changes OF Z and whether it brings us to the desired optimum.
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